

High Functionality - High Precision - High Quality

Urethane belt Design Manual

To give attentive consideration to both humanity and nature.

Please read before use.

Precautions for Safe Use of Polyurethane Belts

When using the product, please read the catalog and design materials carefully, pay strict attention to the following items, and use the product correctly. The levels of effect on safety for various items are classified as follows.

Symbol Mark	and Class	sification Content Criteria
Signal Word	anger	When improper handling could cause danger or damage leading to death or serious injury to the user,
<u> </u>	Jarning	When improver handling could cause danger or damage leading to death or serious injury to the user.
		When improper handling could cause danger and could lead to bodily harm of the user and/or could cause only physical damage.
<u>.</u> ,,,	uution	
		Application/Purpose
Danger	Provide sep	arate safety equipment to prevent equipment from spinning, running, or stopping if belt breaks. This has a high probability of leading to death or serious injury of the user.
Warning	If the belt d cause fire o	rive equipment may generate static electricity, use an anti-static-type belt and provide a static charge eliminator mechanism on the equipment. Static electricity may r malfunction which may lead to death or serious injury of the user.
Caution	Do not use please cont	the belt as an insulator. Use as an insulator could lead to injury due to electric shock to the user. Belt insulation characteristics are different depending on the type, so act us with any questions.
Caution	Please use a harmful sub Do not mod	a belt compatible with the Food Hygiene Law for cases where the belt will be in direct contact with food. If a belt that is not compatible with the Food Hygiene Law is used, stances such as oil could be transferred from the belt to the food and lead to injury of the end customer who eats the food. fy the belt. This could lead to loss of quality or performance of the belt and lead to injury of the user.
		Eurotion/Devformance
A Coulier	The product	c in this catalog are primarily made of polyurathane electromers. Use within the escape of the characteristics and physical properties to prove trauble when when the bet
	Otherwise,	is in this catalog are primarily made or polytremane elastomers. Use within the scope of the characteristics and physical properties to prevent trouble when using the beit, this could lead to early stage damage to the belt and injury of the user.
Caution	Do not use f	or anything other than the "Applications" noted in the catalog and design materials for each of the belts. This could lead to early stage damage to the belt and injury of the user.
Caution	Toothed be	chemicals, paint, and/or dust adhere to the belt of pulley, they could cause reduction in power transfer of lead to early failure, and this could lead to injury of the user.
A Warrian	For bolto th	Storage/Transport
	cause death	a are neavy, some using appropriate jugs of stoppers to prevent them norm failing over or moving. If a neavy beit fails over or moves, it could fail onto a user and could for serious injury.
Caution	When trans	porting or handling a heavy belt or pulley, be sure to use transport tools and equipment that can handle the weight. Lifting by hand may cause injury to the lower back.
Caution	the user.	the belt too far or transport of store with a neavy object on top of it. This could lead to early failure due to a kink or damage to the belt which in turn could lead to injury of
A Caution	Please store belt and ma	e belts at a temperature of -10°C to 40°C with low humidity. Also, do not place the belt in direct sunlight while in storage. This could cause shrinking or relaxation of the y make it unsuitable for use.
		Installation/Use
🔔 Danger	Be sure to u lead to deat	se safety covers on rotating parts, including the belt and pulleys. Failure to do so could lead to the user's hair, gloves, or clothes getting caught in the belt or a pulley, and h or serious injury. In addition, if a belt breaks or a pulley is damaged, it is highly likely that flying parts will hurt the user.
A Caution	Be sure to a injury of the	djust the pulley alignment to the parallelism/eccentricity noted in the catalog. Deviation in the alignment could lead to early failure of the belt or falling of the flange and user.
A Caution	Do not cut t	he belt while under tension with a knife, scissors, or similar tool. The belt may break apart and cause injury to the user.
Caution	Make sure t belt and inju	hat the belt is correctly fitted into the grooves of the pulleys before use. If the belt is not correctly fitted into the grooves of the pulleys, it could lead to early failure of the ry to the user.
Caution	The belt and	I pulleys may be extremely hot immediately after stopping. Wait until the belt and pulleys have cooled before touching to prevent injury of the user.
A Caution	belt or dama	age to the shaft.
2 Caution	If additional 1) Remove a 2) Ensure di 3) Ensure p	machining is performed on a pulley, be sure to perform the following. If these actions are not performed, it could lead to failure of the belt or pulleys or injury of the user. any burrs or sharp edges from the machined area. mensional accuracy after machining. Jllev strenoth after machining.
A Caution	If attaching flange after	a flange to the pulley, make sure there is no foreign material on the mating area of the pulley body and flange. Also, if crimping, etc., make sure there is no play in the attaching. Inappropriate attaching could lead to disengagement of the flange.
		Maintenance/Inspection/Replacement
🕂 Danger	Please obset to death or s 1) Make sur 2) If there is	rve the following items when performing maintenance, inspecting, or replacing a belt. Failure to do so could lead to the user getting caught in the belt and very likely lead serious injury. e the switch is turned OFF and the belt and pulleys have come to a full stop. possibility of the machine rotating when the belt is removed, be sure to secure the machine prior to starting work.
A Caution	When replace	e the switch will not unexpectedly be turned ON while work is being performed. Sing a belt or pulley, be sure to do so with an product equivalent to the one being used. If a different product is used, it could cause early failure which could lead to injury
Caution	of the user. Be sure to le	posen the belt tension before replacing. Forcibly causing it to ride up over the flange or twisting it with a screwdriver, etc., could lead to early failure.
Caution	If multiple b	elts are being used, be sure to replace all of the belts at the same time. Failure to do so could lead to early failure of the belt and lead to injury of the user.
		Handling of Used Products
Warning	Do not burn	belts in an enclosed area. Doing so could lead to generation of toxic gas, which could lead to death or serious injury due to poisoning.
Caution	Do not burn	belts even in open areas. Doing so could lead to generation of toxic gas, potentially leading to poisoning and injury.

1. Properties

Polyurethane Product Characteristics	P5
Product Structure of Polyurethane Products	P6
PolyMax®	P7
Ribstar® Belt U	P11
Machine Belt MB	P13
Plain Rope	P14
Specially Shaped Products	P15
Sleeve Roll	P16

CONTENTS

2. Design

PolyMax® Design Procedure P19 - P20
PolyMax® Design Calculation Examples P21 - P22
PolyMax® Standard Transmission Capacity Table P23 - P26
PolyMax® Reference Materials P27
RibStar® Belt U Design Procedure P28 - P29
RibStar $^{\circ}$ Belt U JBT Standard Transmission Capacity Table $\hdots P30$
Machine Belt MB Design Procedure P31
Plain Rope Design Procedure P32 - P33
Plain Rope Endless Operation Procedure P33
Japan Offices and International Production/Sales Offices P24

Properties Characteristics Section

1. Properties

Polyurethane Product Characteristics Product Structure of Polyurethane Products PolyMax[®] Ribstar[®] Belt U Machine Belt MB Specially Shaped Products Sleeve Roll Plain Rope

Polyurethane Product Characteristics

Polyurethane Elastomer Characteristics

- Compared to regular rubber, polyurethane has the following characteristics: Durability, oil resistance, ozone resistance, tear resistance, vibration damping, high hardness, high elasticity and high adhesive strength
- In dry environments, readily withstands temperatures up to 80°C.
- In hot and humid environments, hydrolysis may occur, so do not use in hot baths/springs or with steam.
- Note that this material is weak with respect to acid bases or solvents.

ltom	Unit		Hardness			
Item	UTIIL	A80°	A85°	A90°		
Specific gravity		1.10	1.10	1.10		
100% modulus	MPa	3.14	4.90	7.75		
Tensile strength	MPa	31.5	31.5	35.0		
Elongation	%	430	440	450		
Tear strength B-method	kN∕m	39.2	69.6	96.1		
Compression permanent strain B-method (70°C x 22 hours) JIS K6262	%	15	22	26		
*Abrasion loss	mg/1000 times	150	100	100		

Polyurethane Elastomer Physical Properties

Table 1 Casting Type

Elongation	%	430	440	450		1	
Tear strength B-method	kN∕m	39.2	69.6	96.1		3	
Compression permanent strain B-method (70°C x 22 hours) JIS K6262	%	15	22	26	Ē		
*Abrasion loss mg/1000 times 150 100 100 Pe							
*Use Taber wear test equipment with load of 9.8 N (H-18) Other parameters should be based on JIS K6264-2							

Table 2 Extrusion type							
Item	Test method	Unit	Value				
Specific gravity	JIS K6268		1.22				
Hardness	JIS K6253	JIS A	88				
5% modulus	JIS K6251	MPa	1.18				
10% modulus	JIS K6251	MPa	1.77				
100% modulus	JIS K6251	MPa	6.28				
300% modulus	JIS K6251	MPa	10.9				
Tensile strength	JIS K6251	MPa	24.5 or higher				
Elongation at break	JIS K6251	%	400 or higher				
Shear strength	JIS K6252	kN/m	0.88				
Permanent elongation	JIS K6273	%	26 or less				

THE OF LESS

Material Physical Properties Comparison of Casting Type Polyurethane with Other Materials

Product Structure of Polyurethane Products

Molding Type

- PolyMax® Page 7
- RibStar® € Belt U Page 11
- Machine Belt MB Page 13
- Specially Shaped Products Page 15

Molding Type (Thermosetting)

● Sleeve Roll ● Page 16

Timing Belt U

Ribstar® Belt U

• Extrusion Type (Plain Rope) (Thermoplastic)

Extrusion Type (Plain Rope)

- Starrope, Super Starrope (round rope)
- Plain V Rope
- Plain Hexagonal Rope

Page 14

PolyMax®

By setting the belt angle to a wide 60° angle, the perpendicular pressure [FN] on the side wall surfaces of the belt and pulley is kept low, providing advantages such as $oldsymbol{1}$ reduced deformation of the belt and uniform force on the Cord and 2 reduced belt and pulley wear.

Fig. 5 Side wall normal force comparison

Structure

DCord Core rubber

Bear surface cog The material is polyurethane. The cog shape improves flexibility as well as heat dissipation. Polyester cord with special processing that has low elongation and is resistant to bending fatigue. Polyurethane with high wear resistance and a large friction coefficient.

Features

(1) Compact transfer with reduced costs as well

Drive is feasible with a small pulley and rotation ratio can be set high. Therefore, a reduction gear is not needed, enabling both cost reduction and space savings.

2 High speed, high efficiency

Belt is lightweight with a high friction coefficient, enabling high speed and high efficient power transfer. Also enables low-vibration, smooth operation from uniform arrangement of Cord.

3 Superior weatherproofing and wear resistance

Primary material is polyurethane elastomer that has high ozone, ultraviolet light, and wear resistance.

Applications

PolyMax[®] Applicable Machinery

- Machines with low torque fluctuations that run continuously at high speed
- Machines that require resistance to ozone, direct sunlight, and other weather elements
- Machines where pulleys with very small diameters are preferred
- Machines that operate at close to constant angular speed while avoiding belt vibration
- Machines for which maintenance inspections are difficult

Table 3

Belt Profile	ЗМ	5M	7M	11M
Primary applications	Office machines Textile machines Small high-speed tools	Air conditioner fans Machine tools Electrical tools Textile machines	Machine tools Fans Blowers Compressors	Machine tools Woodworking machinery Generators

Machinery for Which PolyMax[®] is Not Suited

- Machinery with high pulsating loads (machinery with abrupt fluctuations in peak torque) Belt may melt due to heat generation from belt slipping.
- Transfer equipment where water or oil will spill onto the belt
 - This may dramatically lower the friction coefficient and cause the belt to slip.
- Operation in environments with acids, bases, or steam present The polyurethane elastomer will hydrolyze.

Standard Belt Sizes

Table 4 Belt cross section dimensions and names

(Unit: mm)
h Tolerance
Tolerance
±2.5
±3.8
±5.1
±6.4
±7.6
±8.9

Table 5 Standard belt size table

Belt names	3M	5M	7M	11M	Belt names	3M	5M	7M	11M
180 185 190 195 200	••••				670 690 710 730	••••	••••	••••	•
206 212 218 224 230	••••				750 775 800 805 825 850	•	••••	•••••••••••••••••••••••••••••••••••••••	•••••••••••••••••••••••••••••••••••••••
236 243 250 258 265	:::::::::::::::::::::::::::::::::::::::				875 900 925 950 975		•••••••••••••••••••••••••••••••••••••••	:::	••••
272 280 290 300 307	••••	•••			1000 1030 1060 1090 1120		••••	••••	••••
315 325 335 345 355	••••	••••			1150 1180 1220 1250 1280		••••	••••	•••••
365 375 387 400 412	••••	••••			1320 1360 1400 1450 1500		••••	••••	•••••
425 437 450 462 475	••••	:::::::::::::::::::::::::::::::::::::::			1550 1600 1650 1700 1750			••••	•••••
487 500 515 530 545	:::	:::::::::::::::::::::::::::::::::::::::	:		1800 1850 1900 1950 2000		•	••••	
560 580 600 615 630 650	••••	••••	••••		2060 2120 2180 2240 2300			••••	••••

• Belt names are their standard outside circumference.

MultiPolyMax[®]

Suitable for machines that don't handle vibration generated by belt oscillation very well and cases where the drive shaft is vertical and the belt readily comes off (belt runs horizontally).

Design methodology is the same as for the single type described ahead.
(Pages 19 to 22) However, for power transfer capacity, please design based on the power transfer capacity for the durability time of 5,000 to 10,000 hours in the power transfer capacity table.

Structure

Characteristics Section

a Rear surface cog The material is polyurethane. Flexibility improves depending on the cog shape.

Cord

- Core rubber
- d Reinforcing fabric

It also has a heat dissipation effect. Polyester cord with special processing that has low elongation and is resistant to bending fatigue.

Polyurethane with high wear resistance and a large friction coefficient.

Polyamide fiber increases rigidity in the crosswise direction and ensures stable driving.

Table 7 Belt cross section dimensions and names

Number of ribs		2			3	
Belt Profile	5M	7M	11M	5M	7M	11M
W	9.8	15.6	24.4	15.1	24.1	37.6
Н	3.4	5.3	7.0	3.4	5.3	7.0
P	5.3	8.5	13.2	5.3	8.5	13.2
Cross section dimensions	<			P		
Label		<u>3R</u> - <u>7</u>	M 1320 Belt	erence (mm) Belt Profile	e Number of ribs	

Table 8 Standard belt size table

Belt Size	5M	7M	11M	Belt Size	5M	7M	11M
500 515 530 545 560	••••	••••		1180 1220 1250 1280 1320	••••	••••	••••
580 600 615 630 650				1360 1400 1450 1500 1550	•		
670 690 710 730 750			:	1600 1650 1700 1750 1800		••••	
775 800 825 850 875				1850 1900 1950 2000 2060	•	••••	
900 925 950 975 1000			•	2120 2180 2240 2300		•	:
1030 1060 1090 1120 1150		••••					

Belt Length Tolerance						
Outside circumference	Tolerance					
500~ 710	±3.8					
730~1090	±5.1					
1120~1500	±6.4					
1550~1900	±7.6					
1950~2300	±8.9					

Pulley Groove Dimensions

	Balt cross	(ba)	(5a)	(50)	(r)	Angle of	f groove		(2K) Increase	
Belt Profile	sectional dimensions width x height (mm)	Width at top of groove ± 0.05 (mm)	Groove intervals +0.13, -0.05 (mm)	Min interval from groove to edge of rim (mm)	Max radius of bottom of groove (mm)	Outer diameter span (mm)	(α) Angle of groove $\pm 0^{\circ}15'$ (degrees)	(hg) Groove depth (mm)	in outer diameter by 2 rods ±0.15 (mm)	(d) Diameter of rod ±0.02 (mm)
214	0.0×0	0.00	0.05	0.00	0.00	17~23 or less	60	2.42	4.15	2.0
3171	2.8×2	2.80	3.30	2.23	2.23 0.30	23<	62	2.33	4.16	3.0
						26.5~32 or less	60	3.90	5.71	
5M	4.5×3.4	4.50	5.30	3.45	0.40	32~67 or less	62	3.74	5.75	4.5
						67<	64	3.60	5.79	
714	75755	7 10	9 5 0	5 65	0.60	42.5~76 or less	60	6.15	10.20	7.5
7101	7.5×5.5	7.10	0.00	5.05	0.00	76<	62	5.90	10.25	7.0
1104	11×7	11.20	12.00	0.60	0.90	67~117 or less	60	9.70	15.10	115
T TIVI		11.20	13.20	0.00	0.00	117<	62	9.31	15.19	11.0

Table 10 PolyMax pulley groove dimensions

Table 11 Pulley effective outer diameter +2K	tolerance (Unit: mm)
Outer diameter span	Tolerance
≦25	±0.03
26~ 50	±0.05
51~125	±0.13
126~250	±0.25
251~500	±0.50
501≦	±1.00

- Make sure that the angle between the pulley shaft and the centerline of the groove angle is $90^{\circ} \pm 0.5^{\circ}$.
- Make sure cumulative error of the groove pitch (Sg) is 0.35 mm or less.
- Outer diameter runout: 0.13 mm ("TIR) for a pulley diameter of up to 250 mm. If larger than 250, add 0.01 mm (TIR) for each additional 25 mm.
- Rim side surface runout: 0.03 mm (TIR) for each 25 mm of diameter for a pulley diameter of up to 500 mm. If larger than 500 mm, add 0.01 mm (TIR) for each 25 additional mm.

*TIR = the difference between the maximum and minimum value of the dial gauge (Total Indicator Runout or Reading)

10

Ribstar[®] Belt U

Features

The Ribstar® Belt U is designed to take advantage of the high power transfer efficiency of V belts and the flexibility of flat belts. The primary material, polyurethane, has superior wear resistance and oil resistance.

Structure

- Rear surface cog The material is polyurethane. Flexibility improves depending on the cog shape. It also has a heat dissipation effect.
- Cords Rib body
- Nylon cord with special processing for resistance to flexural fatigue. Polyurethane with superior wear resistance, oil resistance, and ozone resistance.

Standard Belt Sizes

Belt names and cross section dimensions Belt label method [display example]

<u>200 JBT</u> 4

Characteristics

No. of ribs (4 ribs) - Belt shape (JBT shape) Belt length (pitch length in inches x 10: 20 inches)

Table 12 Belt cross section dimensions

Cross section dimensions		Belt shape	JT	JBT	HB
Rib pitch	Р	(mm)	2.34	2.40	1.6
Rib angle	θ	(degrees)	40	40	40
Rib height	Н	(mm)	1.8	1.8	1.0
Base of rib - back surface th	iickness T	(mm)	1.7	1.7	1.5
Total thickness	H+T	- (mm)	3.5	3.5	2.5
Belt width	W	(mm)		No. of ribs x rib pitch	

Fig. 7

Table 13 JBT Profile standard belt size table

Number of ribs	Name	Pitch length (mm)	Number of ribs	Name	Pitch length (mm)
	82	208		135	343
	84	213		175	445
	87	221		179	455
	89	226		180	457
3 ribs	90	229	3 ribs	212	538
4 ribs	97	246	4 ribs	226	573
5 ribs	100	254	5 ribs	229	582
6 ribs	102	259	6 ribs	235	597
	116	295		245	622
	123	312		247	627
	125	318		337	856
	130	330			

If you are looking for something other than JT Profile or HB Profile or a different number of ribs than those shown in the table, please contact our company.

Table 14 Difference between pulley pitch diameter and outer diameter

	2a
JT,JBT	0.76mm
HB	0.51mm

Pulley pitch diameter = pulley outer diameter + 2a

(See Page 12, Table 15 regarding 2a)

Pulley groove profile and groove dimensions

Table 15 RibStar pulley groove dimensions table

Belt Profile	(C.P) Rib groove pitch	(H) Rib groove depth	($lpha$) Rib groove angle (°)	(TR) Radius of rounded part at rib tip	(BR) Radius of rounded part at rib base	2a	(f) Distance from groove center to pulley edge
JT	2.34	2.253	40	Min. 0.20	0.3	0.76	3.5
JBT	2.40	2.335	40	Min. 0.20	0.3	0.76	3.5
HB	1.60	1.525	40	Min. 0.15	0.2	0.51	1.9

Pulley width = (number of grooves - 1) x rib pitch + (f x 2)

(Unit: mm)

 \swarrow

Machine Belt MB

The Mitsuboshi polyurethane machine belt MB is a small V belt for light load power transfer with a beautiful appearance.

Features

- Through the use of cogs and highly flexible material, this can be used with small pulleys. The minimum pulley diameter for a single cog is 18 mm.
- Wear resistance is particularly superior, enabling clean operation with low scattering of rubber.
- Has superior oil resistance.
- Friction coefficient is high, enabling power transfer with little slip.

• Cord: Polyester cord with special processing that has low elongation and is resistant to bending fatigue.

• Core rubber: The material is polyurethane. Flexibility improves depending on the cog shape.

Table 16 Belt types and cross section dimensions

Table 17 Standard belt size table

Belt Profile	MB						
Belt type	Single cog						
a×b(mm)	6.0×4.0						
Belt length	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$						
	400 410						

Table 18 Pulley groove shape and groove dimensions

Pulley diameter	Minimum width (w)	Minimum height (h)	θ	R	Wo Reference (min)
16~30mm	5.4	4.5	36°	0.8	5.6
30mm or higher	5.4	4.5	38°	0.8	5.6

Characteristics Section

Open-end Polyurethane Belts (Prene Rope)

There are three types of extrusion-type polyurethane belts: Starrope, prene V rope, and prene hexagonal rope. Made only of polyurethane, so a belt can be obtained at a required length as needed using simple thermal welding. In addition, Super Starrope with low elongation and high power transfer efficiency compared to conventional products has been added to the product lineup.

Features

- Has superior wear resistance.
- Has superior oil resistance.
- Creating a joint using thermal welding is simple.
- Also enables design freedom for complex transfers such as
- multi-axial transfer and right angle transfer.
 Has high hardness, excellent elasticity, and superior weather resistance.

Table 19 Physical properties

ltem	Test method	Unit	Super Starrope	Starrope
Specific gravity	JIS K6268		1.22	1.22
Hardness	JIS K6253	JIS A	92	88
5% modulus	JIS K6251	MPa	1.96	1.18
10% modulus	JIS K6251	//	3.14	1.77
100% modulus	JIS K6251	//	8.83	6.28
300% modulus	JIS K6251	//	14.7	10.9
Tensile strength	JIS K6251	//	32.4	24.5
Elongation at rupture	JIS K6251	%	400 or higher	400 or higher
Tear strength	JIS K6252	kN/m	0.93	0.88

External appearance picture

Fig. 10 Tensile stress (low elongation ratio)

Table 20 Starrope/Super Starrope belt cross section dimensions 🌒 (Fig. 11)

Belt shape	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 12	No. 15
d (mm)	2	3	4	5	6	7	8	9	10	12	15
Length of	200	200	200	200	100	100	100	100	100	50	50

Table 21 Prene V rope belt cross section dimensions 🕏 (Fig. 12)

Dimensions	Belt shape	М	А	В
а	(mm)	10.0	12.5	16.5
b	(mm)	5.5	8.5	10.5
θ	degrees	40	40	40
Length o	f one reel (m)	100	50	50

Table 22 Prene hexagonal rope belt cross section dimensions 🗢 (Fig. 13)

Dimensions	elt shape	AA	BB
а ((mm)	12.5	16.5
b ((mm)	10.0	12.5
θ de	egrees	40	40
Length of one reel	(m)	50	50

Table 23 Prene V rope/prene hexagonal rope pulley dimensions 🌒 (Fig. 14)

	Belt shape		Prene V Rope	Prene Hexagonal Rope		
Dimensions		М	А	В	AA	BB
b	(mm)	9.7	12.3	16.3	12.3	16.3
h	(mm)	9.0	12.5	15.0	12.5	15.0

The pulley dimensions of a V pulley are specified in JIS-B1854.

Table 24 Starrope/Super Starrope pulley dimensions 🜒 (Fig. 15)

Dimension	Belt shape	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 12	No. 15
а	(mm)	0.6	0.6	0.6	1.3	2.0	2.7	3.4	4.1	4.8	6.2	8.3
b	(mm)	2.9	4.3	5.7	7.1	8.6	10.0	11.4	12.9	14.3	17.1	21.4
h	(mm)	3.0	5.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	15.0	18.0

Prene V Rope

Prene Hexagonal Rope

Characteristics Section

Specially Shaped Products

Features

- 1. Various shaped protuberances can be attached to the back surface of the belt.
- Use of a special mold* enables attaching a protuberance shaped optimally for items being transported on the back surface of the belt. As this is feasible without requiring post-processing or secondary processing, it is beneficial for short deadlines and cost reduction.
- 2. Can be provided with multiple functions.
- Through the use of special shapes, the belt can be used for multiple functions such as transport or positioning in addition to transfer functionality. 3. Resistant to detachment of protuberances.
- Integrated casting so protuberances do not easily detach.
- Also can be colored with desired color.
 Uses urethane that can be colored, so it can be set to the color that you prefer.
- Able to support large orders.
 These are cast using a metal mold so we can support large orders.

*Separate metal mold required.

Applications

Characteristics Section Computers, OA devices, Office equipment, Printers, Robots, Leisure devices, Money-changing machines, Vending machines, Medical devices, Textile machines, Automobiles, Household electronics, Packaging equipment, Optical devices, etc.

Transfer soft materials without scratches. Two layer feeder belt

Belt for feeding computer paper with accurate paper feed

Sleeve Roll

This press-fit-type roller covering and cushioning material is a brand-new concept, featuring a one-piece molding of flexible two-layer urethane.

Features

- Can easily be equipped by simply press-fitting onto a steel core or roller and also exhibits excellent grip.
- 2 Enameling on a steel core or roller (lining); eliminates labor required for replacing the reel using adhesives and is very economical.
- Compared to rolls made of plastic or rubber, it has superior wear resistance and oil resistance.

It also has superior water resistance and weather resistance.

Using an integrated flexible and rigid two layer structure lessens impact, enables quiet transport on the back surface, and contributes to preventing noise and damage.

In addition, rust from rollers will not get on material being transported, providing superior cleanliness.

Applications

Flat carrier rollers Return rollers

Protection of material being transported Preventing adherence of rust on material surface Washing operation lines Slate manufacturing lines Glass plate manufacturing lines Cathode ray tube manufacturing lines Feed rollers Automatic warehouses Cardboard box transport lines (Note) Please ask about use of drive rollers for transport.

Table 25

Name	Application shaft diameter (mm)	Thickness (mm)	Width (mm)	Hardness (Hs°)	Stocked/not stocked
SR-36	38.0				
SR-41	42.7				
SR-47	48.6	5			Draduat stacked
SR-55	57.0				Product stocked
SR-58	60.5				
SS-36	38.0				
SS-41	42.7	3	50	80+86	
SS-55	57.0	5	50	(Exterior)	
SS-58	60.5			(Interior)	
SRD-36	38.0				Product not stocked
SRD-41	42.7	5			
SRD-47	48.6	(Shape of			
SRD-55	57.0	cog surface)			
SRD-58	60.5				

Example SR-50-47

How to Attach

- 1. Use of a jig slightly larger than the shaft diameter (such as PVC pipe, etc.) makes it easy to insert.
- 2. Apply a small amount of solvent (thinner, acetone, alcohol etc.) to the inner surface of the sleeve roll to make it easy to insert.

Design Section

2. Design Section

PolyMax®	Design Procedure
	Design Calculation Example
	Standard Transmission
	Capacity Table
	Reference Materials
RibStar [®] Belt U	Design Procedure
	JBT Standard Transmission
	Capacity Table
Machine Belt MB	Design Procedure
Plain Rope	Design Procedure
	Endless Operation Procedure

Design Procedure

Determine the conditions required for design.

Design Procedure

Determine design power.

How to determine design power (Pd)

Pd=Pt·Ko

 Machine type **b** Transfer power

> For transfer of power, use of the actual load that is applied to the belt is ideal, but generally, the rated load of the motor is used.

O Rotational speed of the small pulley

Large pulley diameter γ **O** Rotational speed ratio Small pulley diameter

Tentative distance between shafts

 Operating environment (low temperature, oil, water, foreign material) Avoid use in high temperature, acidic, and basic environments.

Design Procedure

Select belt durability life.

Determine the durability life based on the machine it will be used on and conditions of operation.

Table 26 Ranking table for machine type and operating condition Machine used on Operating conditions Rank

Lawnmower	Household use	A
	Office use	В
Woodworking	Household use	A
machinery	Office use (light load)	В
,	Office use (heavy load)	С
Blower		A
Washing machine	Household use	А
	Office use	В
Dryer	Household use	A
	Office use	В
Light load office machine	Household use	A
(Typewriter, etc.)	Office use	А
Office machine	Continuous use	С
(Computer, etc.)		
Machine tools	Household use	A
	Office use (light load)	В
	Office use (heavy load)	С
Air Conditioner	Household use	В
	Office use	С
Fan	Household use	В
	Office use	С
Electric tools		Δ

Durability life

A: 3,000 to 5,000 hours

B: 5,000 to 10,000 hours

C: 10,000 to 25,000 hours

able 27 Load co	rrection t	actor (Ko	D)	
			Items where maximum output is less than or equal to 200% of rating	Items where maximum output is greater than 200% of rating
Motor Machine used on		or	AC motor Standard motor (normal torque) Cage type, synchronous	AC motor Specialty motor (high torque) Single phase, DC winding
			DC motor (AC winding)	DC motor (compound winding, DC winding) Operated by an engine, line shaft, or clutch
Low speed continuous Small Large		Small	1.0	1.1
		Large	1.3	1.4
Office machines			1.2	1.3
	Centrifugal type Gear type Reciprocating-motion machine		1.1	1.2
Pump			1.3	1.4
			1.5	1.6
Washing machines, dryers, dough mixers, DC generators, small compressors (rotary type), line shafts, rotary vibration sieving machines, printers, portable tools		type), sieving le tools	1.3	1.4
Machine tools, piston type pumps, compressors, paper production mills		umps, ion mills	1.4	1.5
Textile machines, lawnmowers, mills (ball roller) woodworking machines		, mills hines	1.5	1.6

However,

Pt: Transfer power (kW)

Table 27

Ko: Load correction factor

Design Procedure

Select belt profile.

Based on the design power and rotational speed of the small pulley determined in ③, select the belt shape using the belt profile selection graph (Fig. 18).

Fig. 18 Belt profile selection graph

Design power (kW) • If the belt profile falls on a borderline or close by, review the various conditions and select the belt profile with the overall lowest cost.

Determine the large and small pulleys, standard belt, and distance between shafts.

Determine the large and small pulleys.

 How to determine the outer diameter (Do, do) of the large and small pulleys

Do=Dp+k

(do=dp+k) Dp=dp<u>nd</u>

However,

k: Difference between pulley outer diameter and pitch diameter (see Table 28) Dp: Large pulley pitch diameter (mm)

dp: Small pulley pitch diameter (mm) nd: Small pulley rotational speed (rpm)

nD: Large pulley rotational speed (rpm)

Table 28 Difference between pulley outer diameter and pitch diameter (k)

Dalk Duafila	Value	e of k
Beil Profile	Single type	Multiple type
3M	+0.5	—
5M	+0.9	-1.2
7M	+1.4	-1.5
11M	+2.1	-1.2

Use a pulley equal to or larger than the minimum pulley diameter for the small pulley.

(Table 29)

Table 29 Minimum pulley outer diameter

Belt Profile	3M	5M	7M	11M
Minimum pulley diameter (mm)	17.0	26.5	42.5	67.0

2 Determine the standard belt.

Using the tentative distance between shafts and large and small pulley outer diameters already determined, determine the effective circumference (Le') of a suggested belt.

How to determine the effective circumference (Le') of a suggested belt

$$Le'=2C'+1.57(Do+do)+\frac{(Do-do)^{2}}{4C'}$$

However,

C': Tentative distance between shafts (mm) Do: Large pulley outer diameter (mm) do: Small pulley outer diameter (mm)

Select the standard belt with a length closest to the effective circumference of this suggested belt.

Standard belt size table 💭 (Page 8, Table 5)

3 Determine the accurate distance between shafts.

② Determine the accurate distance between shafts using the following equation from the effective circumference of the standard belt selected.

• How to determine distance between shafts (C)

$$C = \frac{b + \sqrt{b^2 - 8 (Do - do)^2}}{8}$$

b = 21 e - π (Do + do)

However,

Le: Effective circumference of standard belt (mm) Do: Large pulley diameter (mm) do: Small pulley diameter (mm)

Design Procedure

Determine the number of belts.

belts.

1 Determine the transfer capacity per belt.

How to determine corrected transfer capacity (Pc)

Pc=Ps·K

However, Ps: Standard transfer capacity (kW) Kθ: Contact angle correction factor

How to determine standard transfer capacity (Ps)

PolvMax®

• How to determine contact angle correction factor (K θ)

Determine the small pulley contact angle ($\theta\!\!\!$) from the following equation and obtain the contact angle correction factor from Fig. 19.

$$\theta = 180^{\circ} - \frac{57.3 (\text{Do} - \text{do})}{\text{C}}$$

However,

Do: Large pulley outer diameter (mm) do: Small pulley outer diameter (mm) C: Distance between shafts (mm)

Fig. 19 Contact angle correction factor (K θ)

2 Determine the number of belts to use.

• How to determine the number of belts to use (nb)

However,

Pd: Design power (kW)

Pc: Corrected transfer capacity (kW)

Round up after the decimal to the next whole number for the number of belts to use.

If more than one belt, use a multi-type if at all possible.

Design Procedure

Confirm adjustment availability for distance between shafts.

Table 30 Adjustment a	availability of distance	between shafts
-----------------------	--------------------------	----------------

Belt Profile	Belt length	Internal adjustment ava	Outer adjustment availability	
3M	180~ 300 307~ 750	4 (8) 6 (12)	5 (9) 7 (14)	(Winimum Value) 7 (14) 10 (22)
5M	280~ 710	8(16)	10(20)	15(30)
	730~ 1,090	9(18)	13(26)	19(38)
	1,120~ 1,500	12(23)	14(28)	23(46)
7M	500~700	8 (15)	10 (20)	15 (30)
	730~1,090	9 (18)	13 (26)	19 (38)
	1,120~1,500	12 (23)	14 (28)	23 (46)
	1,550~1,900	14 (28)	17 (33)	27 (58)
	1,950~2,300	17 (33)	19 (38)	30 (70)
11M	710~1,090	9(18)	13 (25)	19 (38)
	1,120~1,500	12(23)	14 (28)	23 (46)
	1,500~1,900	14(28)	17 (33)	27 (58)
	1,950~2,300	19(38)	19 (38)	35 (70)

 When mounting the belts, shorten the distance between shafts to enable mounting without requiring force. In addition, proper tension must be provided to extend durability life of the belt.

The number in () is adjustment availability for cases where there are 3 or more shafts.

(Unit: mm)

Design Calculation Example

Design Procedure

Determine the conditions required for design.

a Machine type: Air conditioner equipment (industrial)

- **b** Power transfer: 0.37 kW
- C Small pulley rotational speed: 3,600 rpm
- **d** Rotational speed ratio: 1.20 (reduction)
- Tentative distance between shafts: 100 mm

Design Procedure

Select belt durability life.

Based on the machine type and operation form for the machine in (1)-a, select Rank C, which is 10,000 to 25,000 hours.

Design Procedure

Determine design power.

Power transfer (Pt) = 0.37 kWLoad correction factor (Ko) = 1.0 O (Page 19, Table 27) Design power (Pd) = Pt x Ko = 0.37×1.0

= 0.37 kW

Design Procedure

Select belt profile.

Determine the belt profile.

Belt profile = 5M

prome.

(Page 19, Fig. 18)

Design Procedure

Determine the large and small pulleys, standard belt, and distance between shafts.

Determine the large and small pulley diameters.

```
Set the small pulley outer diameter (do) to the minimum pulley outer diameter
(Page 20, Table 29)
Set to 35 mm, satisfying that described above.
Small pulley outer diameter (do) = 35 mm
Small pulley rotational speed (nd) = 3,600 rpm
Large pulley rotational speed (nD) = 3,000 rpm
```

Determine the large pulley outer diameter (Do).

2 Determine the standard belt.

Tentative distance between shafts (C') = 100 mm Large pulley outer diameter (Do) = 42 mm Small pulley outer diameter (do) = 35 mm

Suggested belt effective circumference (Le¹)

 $=2C'+1.57(Do+do)+\frac{(Do-do)^{2}}{4C'}$

$$=2\times100+1.57(42+35)+\frac{(42-35)^2}{4\times100}$$

≑321.0mm

Select 5M-325, the belt among the standard belt sizes with the closest effective circumference to that of this suggested belt. (Page 8, Table 5)

3 Determine the accurate distance between shafts.

Large pulley outer diameter (Do) = 42 mm Small pulley outer diameter (do) = 35 mm Standard belt effective circumference (Le) = 325 mm

b=2Le- π (Do+do) =2×325-3.14×(42+35) \approx 408.2

Distance between (C) =
$$\frac{b + \sqrt{b^2 - 8(Do - do)^2}}{8}$$

shafts
= $\frac{408.2 + \sqrt{408.2^2 - 8 \times (42 - 35)^2}}{8}$

⇒101.99mm→102mm

01

Determine the number of belts.

Determine the corrected power transfer capacity. Standard transfer capacity (Ps) = 0.43 kW

- (Page 24, Table 33)
- **•** Determine the correction factor (K θ) based on the contact angle.

Large pulley outer diameter (Do) = 42 mmSmall pulley outer diameter (do) = 35 mmDistance between shafts (C) = 102 mm

• Contact angle (
$$\theta$$
) =180° - $\frac{57 (Do - do)}{C}$

$$=180^{\circ} - \frac{57(42-35)}{102.0} \doteqdot 176^{\circ}$$

From Fig. 19 on Page 20, the contact angle correction factor (K θ) is 0.98.

Corrected power (Pc)=Ps⋅K∂=0.43×0.98 transfer capacity ≒0.42kW

(2) Determine the number of belts to use. Design power (Pd) = 0.37 kW Corrected transfer capacity (Pc) = 0.42 kW Number of belts to use $(nb) = \frac{Pd}{Pc} = \frac{0.37}{0.42}$ =0.88 \rightarrow 1 belt **Design Procedure**

Confirm adjustment availability for distance between shafts.

From belt name 5M325 To inside 8 mm To outside 15 mm (Page 20, Table 30)

Table 31 Adiustment availability of distance between shafts	
i abio of rajactinoni aranabing of alctanoo bothoon onalio	

Belt shape	Belt length	Internal adjustment ava Single belt type	ilability (minimum value) Multiple belts or multi-type	External adjustment availability (Minimum value)
3M	180~ 300	4(8)	5(9)	7(14)
	307~ 750	6(12)	7(14)	10(22)
5M	280~710	8(16)	10 (20)	15 (30)
	730~1,090	9(18)	13 (26)	19 (38)
	1,120~1,500	12(23)	14 (28)	23 (46)

(Unit: mm)

Summary

Belt: 5M325

Pulley: Drive (small pulley) outer diameter 35 mm Driven (large pulley) outer diameter 42 mm

Distance between shafts: 102⁺¹⁵ -8mm

Table 32 3M Theoretical Durability Life and Standard Transfer Capacity

	Durability	/ life 3,000	to 5,000 h	standard trans	fer capacity	(Unit: kW)
--	------------	--------------	------------	----------------	--------------	------------

Small pulley rotational		Small pulley outer diameter (mm)										
speed (rpm)	17	18	19	20	21	22	23.5	25	26.5	28	30	31.5
1750 3450	0.04 0.04	0.05 0.07	0.07 0.09	0.07 0.12	0.09 0.14	0.11 0.17	0.13 0.21	0.14 0.24	0.16 0.27	0.18 0.32	0.21 0.36	0.24 0.41
1000 2000 3000 4000 5000	0.03 0.04 0.04 0.04 0.02	0.04 0.05 0.07 0.07 0.07	0.04 0.07 0.09 0.10 0.10	0.05 0.08 0.11 0.13 0.13	0.06 0.10 0.13 0.15 0.17	0.07 0.12 0.15 0.18 0.21	0.08 0.14 0.18 0.22 0.26	0.09 0.15 0.21 0.26 0.30	0.10 0.18 0.25 0.30 0.35	0.12 0.20 0.29 0.35 0.41	0.14 0.24 0.32 0.40 0.48	0.15 0.27 0.37 0.46 0.54
6000 7000 8000 9000 10000	0.01 — — —	0.06 0.04 0.02 	0.10 0.10 0.09 0.07 0.06	0.14 0.15 0.14 0.14 0.13	0.18 0.19 0.20 0.20 0.20	0.24 0.25 0.26 0.27 0.28	0.29 0.31 0.33 0.35 0.36	0.34 0.37 0.40 0.42 0.44	0.40 0.44 0.48 0.51 0.54	0.46 0.51 0.56 0.60 0.63	0.54 0.60 0.63 0.71 0.75	0.62 0.68 0.75 0.81 0.87
11000 12000	_	_	0.04 0.01	0.12 0.10	0.19 0.18	0.28 0.28	0.37 0.38	0.46 0.47	0.56 0.58	0.67 0.70	0.77 0.83	0.91 0.96

• Durability life 5,000 to 10,000 h standard transfer capacity (Unit: kW)

Small pulley rotational					Small pull	ey outer dian	neter (mm)					
speed (rpm)	17	18	19	20	21	22	23.5	25	26.5	28	30	31.5
1750 3550	0.02	0.03 0.02	0.04 0.05	0.06 0.07	0.07 0.10	0.09 0.13	0.10 0.15	0.12 0.18	0.14 0.22	0.16 0.26	0.18 0.29	0.21 0.34
1000 2000 3000 4000 5000	0.02 0.01 — —	0.03 0.04 0.03 0.01 —	0.04 0.04 0.05 0.04 0.03	0.04 0.06 0.07 0.07 0.07	0.05 0.07 0.09 0.10 0.10	0.06 0.10 0.12 0.13 0.14	0.07 0.11 0.14 0.16 0.18	0.08 0.13 0.17 0.20 0.22	0.09 0.15 0.20 0.24 0.27	0.10 0.18 0.24 0.28 0.32	0.12 0.21 0.27 0.33 0.38	0.13 0.23 0.31 0.38 0.43
6000 7000 8000 9000 10000	 		0.01 — — —	0.05 0.04 0.01 —	0.10 0.08 0.07 0.04 0.02	0.14 0.14 0.13 0.12 0.10	0.19 0.19 0.19 0.19 0.19 0.18	0.24 0.25 0.26 0.26 0.26	0.29 0.32 0.33 0.34 0.35	0.35 0.38 0.40 0.42 0.43	0.42 0.46 0.49 0.51 0.53	0.48 0.53 0.57 0.60 0.63
11000 12000	_		_	_		0.09 0.06	0.17 0.15	0.25 0.24	0.35 0.35	0.44 0.45	0.55 0.56	0.65 0.68

• Durability life 10,000 to 25,000 h standard transfer capacity (Unit: kW)

Small pulley rotational					Small pulle	ey outer dian	neter (mm)					
speed (rpm)	17	18	19	20	21	22	23.5	25	26.5	28	30	31.5
1750 3450			0.01	0.03	0.04 0.02	0.05 0.05	0.07 0.08	0.08 0.10	0.10 0.13	0.12 0.17	0.14 0.21	0.16 0.24
1000 2000 3000 4000 5000	0.01 — — —	0.01 	0.02 0.01 	0.03 0.03 0.01 —	0.04 0.04 0.03 0.01	0.04 0.06 0.06 0.04 0.02	0.05 0.07 0.08 0.07 0.06	0.06 0.09 0.10 0.10 0.10	0.07 0.11 0.13 0.14 0.14	0.08 0.13 0.15 0.18 0.18	0.10 0.15 0.19 0.21 0.24	0.11 0.18 0.22 0.26 0.28
6000 7000 8000 9000 10000		 					0.04 0.01 	0.08 0.06 0.04 	0.13 0.12 0.10 0.07 0.04	0.18 0.18 0.16 0.15 0.12	0.24 0.24 0.23 0.22 0.21	0.29 0.30 0.31 0.30 0.29

Table 33 5M Theoretical Durability Life and Standard Transfer Capacity

	Durability	/ life 3.000	to 5.000	h standard transfer	capacity (Unit: kW
<u> </u>					

Small pulley rotational					Small pull	ey outer diar	meter (mm)					
speed (rpm)	26.5	28	30	31.5	33.5	35.5	37.5	40	42.5	45	47.5	50
1160 1750	0.13	0.15	0.18 0.25	0.21	0.26	0.29	0.24	0.38	0.43	0.49	0.54 0.78	0.60
1000 2000	0.11 0.18	0.13 0.23	0.42	0.19	0.23 0.40	0.26	0.82	0.34 0.60	0.38	0.43	0.48	0.53
3000 4000 5000	0.24 0.28 0.30	0.30 0.37 0.41	0.38 0.46 0.54	0.46 0.56 0.65	0.54 0.68 0.80	0.64 0.79 0.94	0.74 0.92 1.09	0.84 1.06 1.27	0.96 1.22 1.46	1.10 1.38 1.65	1.22 1.55 1.85	1.35 1.72 2.06
6000 7000	0.33 0.35	0.46	0.60 0.65	0.74	0.90	1.08 1.21	1.25 1.40	1.45 1.63	1.68 1.89	1,91 2.15 2.29	2.15 2.42 2.67	2.38
9000 10000	0.35 0.35 0.35	0.54 0.54	0.74 0.77	0.95	1.18	1.52 1.43 1.53	1.67 1.79	1.96 2.10	2.09 2.27 2.45	2.60 2.81	2.07 2.97 3.16	2.90 3.25 3.51
11000 12000	0.32 0.30	0.55 0.55	0.80 0.82	1.05 1.09	1.33 1.40	1.62 1.71	1.91 2.02	2.24 2.37	2.61 2.77	2.99 3.17	3.38 3.57	3.76 3.99

• Durability life 5,000 to 10,000 h standard transfer capacity (Unit: kW)

Small pulley rotational					Small pul	ley outer dia	meter (mm)					
speed (rpm)	26.5	28	30	31.5	33.5	35.5	37.5	40	42.5	45	47.5	50
1160	0.10	0.13	0.15	0.18	0.22	0.26	0.29	0.34	0.39	0.44	0.49	0.54
1750	0.13	0.17	0.21	0.26	0.31	0.36	0.41	0.48	0.55	0.62	0.70	0.77
3450	0.18	0.24	0.32	0.40	0.50	0.60	0.70	0.81	0.94	1.07	1.21	1.34
1000	0.10	0.12	0.14	0.17	0.20	0.23	0.26	0.30	0.35	0.39	0.43	0.48
2000	0.14	0.18	0.23	0.28	0.34	0.40	0.46	0.53	0.61	0.69	0.78	0.86
3000	0.17	0.23	0.30	0.38	0.46	0.54	0.63	0.73	0.85	0.96	1.08	1.20
4000	0.18	0.26	0.35	0.45	0.55	0.66	0.78	0.90	1.05	1.20	1.35	1.51
5000	0.18	0.28	0.40	0.51	0.64	0.77	0.91	1.07	1.24	1.43	1.60	1.79
6000	0.16	0.29	0.43	0.56	0.71	0.88	1.03	1.21	1.42	1.63	1.84	2.05
7000	0.13	0.28	0.44	0.60	0.78	0.96	1.14	1.35	1.58	1.82	2.06	2.30
8000	0.10	0.27	0.46	0.63	0.83	1.04	1.24	1.47	1.73	1.99	2.26	2.53
9000	0.05	0.25	0.46	0.65	0.88	1.10	1.32	1.58	1.87	2.16	2.45	2.74
10000	—	0.21	0.45	0.67	0.91	1.15	1.41	1.68	1.99	2.31	2.63	2.94
12000		0.18	0.43	0.68	0.94	1.21	1.47	1.// 1.85	2.11	2.45 2.57	2.79	3.13

• Durability life 10,000 to 25,000 h standard transfer capacity (Unit: kW)

Small pulley rotational					Small pull	ey outer diar	meter (mm)					
speed (rpm)	26.5	28	30	31.5	33.5	35.5	37.5	40	42.5	45	47.5	50
1160 1750 3450	0.07 0.07 0.03	0.09 0.11 0.10	0.12 0.15 0.18	0.15 0.19 0.26	0.18 0.24 0.35	0.21 0.29 0.43	0.24 0.33 0.52	0.29 0.39 0.63	0.33 0.45 0.74	0.38 0.50 0.85	0.42 0.58 0.97	0.47 0.64 1.09
1000 2000 3000 4000 5000	0.07 0.07 0.05 	0.08 0.11 0.11 0.10 0.05	0.11 0.16 0.18 0.18 0.18	0.13 0.21 0.25 0.27 0.29	0.16 0.26 0.32 0.38 0.40	0.19 0.31 0.40 0.47 0.53	0.22 0.37 0.48 0.57 0.65	0.25 0.43 0.57 0.69 0.79	0.29 0.50 0.67 0.82 0.94	0.33 0.57 0.77 0.95 1.10	0.38 0.65 0.88 1.08 1.26	0.41 0.72 0.98 1.21 1.41
6000 7000 8000 9000 10000	 	 	0.15 0.10 0.04 —	0.28 0.26 0.23 0.18 0.13	0.43 0.43 0.42 0.40 0.38	0.57 0.60 0.61 0.61 0.60	0.71 0.76 0.79 0.81 0.82	0.87 0.94 0.99 1.04 1.07	1.05 1.14 1.22 1.29 1.34	1.23 1.35 1.45 1.53 1.60	1.41 1.55 1.68 1.78 1.88	1.60 1.76 1.90 2.03 2.14
11000 12000	-	_		0.07	0.34 0.27	0.58 0.55	0.82 0.81	1.08 1.09	1.38 1.40	1.66 1.71	1.95 2.01	2.24

2 Design Section

24

Table 34 7M Theoretical Durability Life and Standard Transfer Capacity

	Durability	/ life 3,000	to 5,000 h s	standard trans	fer capaci [:]	ty (Unit: kW)	1
--	------------	--------------	--------------	----------------	-------------------------	------	-----------	---

Small pulley rotational					Small pull	ey outer dian	neter (mm)					
speed (rpm)	42.5	45	47.5	50	53	56	60	63	67	71	75	80
870	0.34	0.40	0.46	0.53	0.60	0.69	0.79	0.90	1.02	1.14	1.26	1.42
1160	0.43	0.51	0.59	0.68	0.77	0.88	1.02	1.15	1.30	1.46	1.62	1.82
1750	0.58	0.70	0.82	0.95	1.09	1.25	1.44	1.63	1.86	2.09	2.31	2.61
3450	0.95	1.43	1.40	1.63	1.89	2.18	2.53	2.88	3.30	3.71	4.11	4.65
1000	0.38	0.45	0.52	0.60	0.68	0.78	0.89	1.01	1.15	1.29	1.42	1.60
2000	0.64	0.78	0.85	1.06	1.22	1.40	1.61	1.83	2.09	2.35	2.60	2.93
3000	0.86	1.06	1.26	1.46	1.69	1.95	2.26	2.57	2.94	3.31	3.66	4.14
4000	1.04	1.30	1.56	1.82	2.13	2.46	2.85	3.25	3.72	3.80	4.65	5.26
5000	1.20	1.52	1.83	2.16	2.52	2.92	3.40	3.88	4.45	5.02	5.57	6.30
6000	1.33	1.70	2.07	2.46	2.88	3.35	3.91	4.47	5.13	5.80	6.43	7.27
7000	1.44	1.87	2.30	2.73	3.21	3.74	4.38	5.02	5.76	6.51	7.22	8.16
8000	1.52	2.01	2.46	2.97	3.51	4.10	4.81	5.52	6.35	7.17	7.94	8.97
9000	1.59	2.13	2.66	3.19	3.78	4.44	5.21	5.99	6.88	7.80	8.61	9.71
10000	1.63	2.22	2.80	3.38	4.04	4.74	5.57	6.40	7.36	8.31	9.19	10.37

• Durability life 5,000 to 10,000 h standard transfer capacity (Unit: kW)

Small pulley rotational					Small pull	ey outer dian	neter (mm)					
speed (rpm)	42.5	45	47.5	50	53	56	60	63	67	71	75	80
870	0.29	0.35	0.41	0.47	0.54	0.63	0.72	0.82	0.93	1.04	1.16	1.30
1160	0.36	0.43	0.52	0.60	0.69	0.79	0.91	1.04	1.18	1.33	1.48	1.67
1750	0.48	0.60	0.71	0.83	0.96	1.11	1.29	1.46	1.68	1.89	2.10	2.37
3450	0.73	0.94	1.15	1.38	1.62	1.89	2.21	2.54	2.91	3.30	3.67	4.16
1000	0.32	0.39	0.46	0.53	0.61	0.70	0.81	0.92	1.04	1.18	1.30	1.46
2000	0.52	0.66	0.79	0.92	1.07	1.24	1.43	1.63	1.88	2.11	2.35	2.66
3000	0.68	0.86	1.05	1.24	1.46	1.70	1.98	2.27	2.61	2.95	3.27	3.71
4000	0.79	1.03	1.27	1.52	1.80	2.11	2.47	2.85	3.27	3.71	4.13	4.69
5000	0.86	1.16	1.46	1.77	2.10	2.48	2.92	3.37	3.88	4.41	4.91	5.58
6000	0.91	1.27	1.63	1.98	2.38	2.81	3.32	3.84	4.44	5.05	5.62	6.38
7000	0.93	1.35	1.75	2.16	2.62	3.10	3.69	4.27	4.95	5.63	6.27	7.12
8000	0.93	1.40	1.85	2.31	2.81	3.36	4.01	4.66	5.40	6.15	6.85	7.80
9000	0.91	1.43	1.93	2.44	2.98	3.58	4.29	4.99	5.80	6.61	7.36	8.39
10000	0.85	1.42	1.98	2.52	3.12	3.77	4.53	5.29	6.15	7.01	7.80	8.83

• Durability life 10,000 to 25,000 h standard transfer capacity (Unit: kW)

Small pulley rotational		Small pulley outer diameter (mm)										
speed (rpm)	42.5	45	47.5	50	53	56	60	63	67	71	75	80
870 1160 1750 3450	0.22 0.27 0.33 0.40	0.28 0.34 0.44 0.60	0.33 0.41 0.54 0.80	0.39 0.49 0.66 1.00	0.46 0.57 0.77 1.22	0.53 0.66 0.91 1.47	0.62 0.77 1.07 1.76	0.70 0.89 1.23 2.05	0.80 1.02 1.42 2.52	0.91 1.16 1.61 2.73	1.01 1.28 1.80 3.05	1.14 1.46 2.04 3.49
1000 2000 3000 4000 5000	0.24 0.35 0.40 0.39 0.34	0.31 0.47 0.57 0.63 0.64	0.37 0.60 0.75 0.85 0.92	0.43 0.71 0.93 1.08 1.20	0.51 0.85 1.12 1.34 1.51	0.59 1.00 1.34 1.61 1.85	0.69 1.18 1.59 1.94 2.24	0.79 1.37 1.85 2.27 2.63	0.91 1.57 2.15 2.66 3.09	1.02 1.80 2.46 3.04 3.55	1.13 1.99 2.74 3.41 4.00	1.28 2.27 3.13 3.89 4.57
6000 7000 8000 9000 10000	0.26 0.13 	0.61 0.55 0.46 0.33 0.17	0.95 0.95 0.91 0.83 0.73	1.28 1.32 1.33 1.31 1.24	1.64 1.74 1.79 1.81 1.80	2.03 2.18 2.29 2.35 2.38	2.49 2.69 2.85 2.97 3.05	2.95 3.21 3.43 3.59 3.70	3.47 3.80 4.08 4.29 4.44	4.00 4.39 4.72 4.98 5.17	4.50 4.94 5.32 5.62 5.84	5.16 5.68 6.11 6.45 6.71

Table 35 11M Theoretical Durability Life and Standard Transfer Capacity

• Durability life 3,000 to 5,000 h standard transfer capacity (Unit: kW)

Small pulley rotational		Small pulley outer diameter (mm)										
speed (rpm)	67	71	75	80	85	90	95	100	106	112	118	125
690	1.07	1.24	1.39	1.60	1.81	2.02	2.25	2.48	2.74	3.02	3.31	3.63
870	1.31	1.51	1.70	1.96	2.23	2.49	2.76	3.05	3.38	3.72	4.08	4.47
1160	1.67	1.93	2.18	2.52	2.86	3.20	2.56	3.93	4.35	4.81	5.27	5.78
1750	2.36	2.74	3.10	3.59	4.09	4.58	5.10	5.63	6.25	6.91	7.58	8.31
3450	4.08	4.77	5.43	6.33	7.25	8.16	9.12	10.08	11.18	12.36	13.53	14.86
1000	1.47	1.70	1.92	2.21	2.52	2.81	3.13	3.44	3.82	4.21	4.61	5.07
2000	2.63	3.06	3.46	4.02	4.59	5.14	5.73	6.33	7.02	7.72	8.53	9.34
3000	3.65	4.27	4.85	5.65	6.47	7.25	8.09	8.97	9.93	10.96	12.06	13.24
4000	4.56	5.35	6.11	7.13	8.16	9.19	10.30	11.33	12.58	13.90	15.23	16.77
5000	5.38	6.33	7.25	8.46	9.78	10.96	12.21	13.53	15.00	16.62	18.17	19.93
6000	6.10	7.22	8.31	9.71	11.18	12.58	14.05	15.52	17.21	18.98	20.74	22.65
7000	6.74	8.02	9.19	10.81	12.43	13.98	15.59	17.21	19.12	21.04	22.95	25.01
8000	7.27	8.68	10.00	11.77	13.53	15.23	16.99	18.76	20.74	22.73	24.71	26.85

• Durability life 5,000 to 10,000 h standard transfer capacity (Unit: kW)

Small pulley rotational		Small pulley outer diameter (mm)										
speed (rpm)	67	71	75	80	85	90	95	100	106	112	118	125
690	0.97	1.12	1.27	1.46	1.67	1.87	2.07	2.30	2.55	2.81	3.77	3.38
870	1.18	1.36	1.55	1.79	2.04	2.29	2.55	2.81	3.12	3.45	3.78	4.16
1160	1.49	1.74	1.97	2.29	2.62	2.94	3.27	3.61	4.02	4.44	4.87	5.35
1750	2.07	2.44	2.77	3.24	3.71	4.16	4.66	5.16	5.73	6.34	6.96	7.65
3450	3.48	4.13	4.76	5.61	6.47	7.29	8.16	9.05	10.08	11.18	12.28	13.53
1000	1.32	1.53	1.74	2.02	2.30	2.58	2.88	3.18	3.52	3.90	4.27	4.70
2000	2.31	2.71	3.09	3.61	4.15	4.66	5.22	5.77	6.42	7.11	7.80	8.61
3000	3.14	3.72	4.27	5.02	5.78	6.52	7.30	8.09	9.05	10.00	10.96	12.06
4000	3.86	4.61	5.32	6.27	7.25	8.16	9.19	10.22	11.33	12.58	13.83	15.15
5000	4.48	5.38	6.24	7.43	8.53	9.71	10.89	12.06	13.46	14.86	16.33	17.95
6000	5.00	6.05	7.05	8.39	9.71	11.03	12.36	13.75	15.30	16.92	18.46	20.30
7000	5.44	6.62	7.72	9.19	10.74	12.14	13.68	15.15	16.84	18.61	20.30	22.14
8000	5.75	7.06	8.31	9.93	11.55	13.09	14.71	16.26	18.09	19.86	21.62	23.54

• Durability life 10,000 to 25,000 h standard transfer capacity (Unit: kW)

Small pulley rotational		Small pulley outer diameter (mm)										
speed (rpm)	67	71	75	80	85	90	95	100	106	112	118	125
690	0.82	0.96	1.10	1.28	1.47	1.65	1.85	2.05	2.27	2.52	2.76	3.04
870	0.99	1.16	1.33	1.55	1.79	2.01	2.25	2.49	2.77	3.07	3.38	3.72
1160	1.24	1.46	1.68	1.97	2.27	2.56	2.87	3.19	3.55	3.94	4.33	4.77
1750	1.68	2.01	2.32	2.74	3.18	3.60	4.04	4.49	5.02	5.57	6.13	6.76
3450	2.63	3.24	3.81	4.58	5.36	6.11	6.91	7.72	8.61	9.64	10.59	11.69
1000	1.10	1.30	1.49	1.74	2.01	2.26	2.53	2.81	3.13	3.46	3.81	4.19
2000	1.85	2.21	2.57	3.05	3.53	4.00	4.50	5.01	5.60	6.22	6.77	7.58
3000	2.42	2.95	3.46	4.14	4.83	5.50	6.28	6.93	7.72	8.61	9.49	10.52
4000	2.87	3.55	4.21	5.08	5.96	6.80	7.72	8.61	9.64	10.74	11.84	13.02
5000	3.20	4.04	4.82	5.87	6.92	7.94	8.97	10.08	11.25	12.58	13.83	15.23
6000	3.43	4.40	5.30	6.51	7.72	8.83	10.08	11.25	12.65	14.05	15.45	16.99
7000	3.54	4.63	5.65	7.00	8.31	9.56	10.89	12.21	13.68	15.23	16.70	18.24
8000	3.53	4.74	5.86	7.36	8.75	10.15	11.55	12.87	14.42	15.96	17.43	18.98

Reference Materials: Points to Remember Regarding Design and Use

Reference Material

tension

PolyMax® has a high transfer capacity relative to the cross-sectional area, so belt tension may feel higher than normal.

• Determine the belt span length.

The span length is the length of the belt not in contact with a pulley.

2 Apply a deflection.

Apply the load calculated using the equation below at the center of the belt span length. Adjust the belt tension so that the deflection is 1 mm per 100 mm of span length. Note that the load should be applied perpendicularly to the belt. (Fig. 21)

For single PolyMax®

Minimum force applied for deflection $F\sigma'$ min. = $\frac{1.12 \times 10^6 Pd}{1000}$ (N) do∙nd

Maximum force applied for deflection Fδ·max.=1.5·Fδmin.

Per 100 mm span length 1 mm deflection

However.

Fig. 21

Pd: Design power (kW) do: Small pulley outer diameter (mm) nd: Small pulley rotational speed (rpm)

For Multi PolyMax®

- Span length (Ls) 🖌

R

Calculate the initial tension (To) and determine the load for applying deflection.

• How to determine initial tension (To) РЧ 25 – Ka

$$To=500\times\frac{2.5-K\theta}{K\theta}\times\frac{Pu}{nr\cdot V}+WV$$

However.

To: Initial tension per belt rib (N/rib) Kheta: Contact angle correction factor (Page 20, Fig. 19) Pd: Design power (kW) nr: Number of belt ribs V: Belt speed (m/sec) $V = \frac{\pi \times do \times nd}{60000}$ W: Belt unit mass (kg/m) (table to upper right)

Minimum force applied for deflection $F\delta$ 'min.= $\frac{T_{0+} \frac{Ls \times Y}{L}}{25}$ L 25 ×nr

Maximum force applied for deflection $1.5To + \frac{Ls \times Y}{L}$

______ L___ ×nr Fδ'max.= —

However,

Ls: Span length, Ls = V C- (D4~d) Y: Constant based on belt shape (table to upper right) L: Belt length (mm) $Ls = \sqrt{C^2 - (D-d)^2}$ nr: Number of belt ribs

Table 36 Belt unit mass and constants

Belt shape	W(kg∕m)	Y						
3M	0.0045							
5M	0.011	14.7						
7M	0.028	38.2						
11M	0.058	83.4						

Stretch new belts with maximum force

 If using multiple single types, matched set belts are recommended. Set difference for matched sets is as follows. Note that use of belts with different lengths will reduce durability Please be careful.

Table 37 Set difference for matched sets (Unit: mm)

Belt effective outer circumference	Set difference
≥500	0.4
515~1,000	0.8
1,030~1,500	1.4
1 550 <	10

Multi-types are recommended when several belts are used.

Reference Material

Using idler pulleys

- Idler pulleys do not work well with PolyMax® belts. If an idler pulley must be used, be sure to use it on the inside. (Fig. 22)
- Use the idler pulley on the belt side that is loose.

Reference Material

Belt handling Notification items regarding use

Belt Storage

PolyMax® has excellent resistance to ozone and direct sunlight, but it is recommended that the belts be stored in a hanging position in a cool, dry, and dark location so that they will not twist.

2 Belt Installation/Replacement

• Be sure to turn OFF the power and wait for the pulleys to stop before performing maintenance or inspection on a belt.

• For mounting, either shorten the distance between shafts or loosen an idler to replace a belt. Forcibly twisting may cause early failure.

 When replacing multiple belts, replace all belts with new ones at the same time

Use of new and old belts together may cause non-uniform elongation with load and reduce durability. Make sure the pulley is not worn.

Multi-types are recommended when several belts

are used.

• When multiple belts of a single type are used, a matched set is recommended.

3 Belt Operation

Use PolyMax[®] within an operating temperature range of -40°C to +80°C.

If distance between shafts is fixed, be sure to pull the tension pulley used from the inside towards the outside. PolyMax[®] is made up of polyurethane with a high friction coefficient, but if water or oil is spilled onto it, the friction coefficient will drop. Be sure to protect the belt from oil and water.

If pulley shaft parallelism and eccentricity are not accurate. belt life will shorten dramatically, so make sure pulley misalignment (θ in Fig. 23) is 1/3° or less.

Design Procedure

Determine the conditions required for design.

Machine type

Transfer power

For transfer of power, use of the actual load that is applied to the belt is ideal, but generally, the rated load of the motor is used.

- Rotational speed of the small pulley
- Operating hours per day
- Rotational speed ratio

(Large pulley diameter Small pulley diameter)

- Tentative distance between shafts
- Operating environment (low temperature, oil, water, foreign material) Avoid use in high temperature, acidic, and basic environments.

Design Procedure

Determine design power.

How to determine design power (Pd)

Pd=Pt∙Ko

However, Pt: Transfer power (kW) Ko: Load correction factor (Table 38)

Table 38 Load correction factor (Ko)

Follower machine		Motor								
		Pe	eak torque of 200% or	less	Pea					
Load fluctuation Ma	Machine used on	AC motor (norm DC motor	al torque, cage type sy	nchronous transfer)	AC motor (high to DC motor (compo Engine, line shaft,					
			Operating hours per da	ıy		Operating hours per day				
		3~5	8~10	16~24	3~5	8~10	16~24	Dooic		
Minute	Stirring machines (fluid) Fans, blowers (small)	1.0	1.1	1.2	1.1	1.2	1.3	Sectio		
Small	Washing machines, generators, machine tools, printers	1.1	1.2	1.3	1.2	1.3	1.4	A		
Medium	Plunger-pumps, textile machines, woodworking machinery	1.2	1.3	1.4	1.4	1.5	1.6			
Large	Crushers Compressors Rolling mills	Use a V belt or a Maxstar Wedge belt.								

Determine the large and small pulleys, standard belt, and distance between shafts.

1 Determine the large and small pulleys.

• How to determine the diameter of the large and small pulleys (Dp, dp)

 $Dp=dp \frac{nd}{nD}$

However,

nd: Small pulley rotational speed (rpm) nD: Large pulley rotational speed (rpm)

② Determine the standard belt.

Using the tentative distance between shafts and large and small pulley outer diameters already determined, determine the suggested belt pitch circumference (Lp[']).

 How to determine the pitch circumference (Lp) of a suggested belt

$$p'=2C'+1.57(Dp+dp)+\frac{(Dp-dp)^2}{4C'}$$

However,

C': Tentative distance between shafts (mm) Dp: Large pulley pitch diameter (mm) dp: Small pulley pitch diameter (mm)

Select a standard belt with length closest to the pitch circumference of this suggested belt.

(Page 11, Table 13)

O Determine the accurate distance between shafts.

② Determine the accurate distance between shafts (C) using the following equation based on the pitch circumference of the standard belt selected.

• Distance between shafts (C) calculation method

However, Dp: Large pulley pitch diameter (mm) dp: Small pulley pitch diameter (mm) Lp: Standard belt pitch circumference (mm)

• Cases where distance between shafts is fixed When used with distance between shafts fixed, set distance between shafts with consideration that the belt will elongate 1.2 to 1.5%.

Design Procedure

Determine the number of ribs for the belt.

1 Determine the transfer capacity per rib of the belt.

• How to determine corrected transfer capacity (Pc) per rib

Pc=Ps·K θ ·K ℓ

However,

Ps: Standard transfer capacity (W) O (Page 30, Table 41) Kheta: Contact angle correction factor O (Page 29, Table 39) K ℓ : Length correction factor O (Page 29, Table 40)

2 Determine the number of belt ribs.

How to determine the number of ribs (n)

However, Pd: Design power (W)

Pc: Corrected transfer capacity (W)

Round up after the decimal to the next whole number for the number of belt ribs to use.

Table 39 Contact angle correction factor (K θ)

Dp-dp C	Small pulley contact angle θ (degree)	Correction factor K 0
0.00	180	1.00
0.10	174	0.99
0.20	169	0.97
0.30	163	0.96
0.40	157	0.94
0.50	151	0.93
0.60	145	0.91
0.70	139	0.89
0.80	133	0.87
0.90	127	0.85
1.00	120	0.82
1.10	113	0.80
1.20	106	0.77
1.30	99	0.73
1.40	91	0.70
1.50	83	0.65

Table 40 Length correction factor (Kℓ)

Pitch length (mm)	Length correction factor
~245	0.90
250~360	1.00
370~520	1.08
530~740	1.15
750 or above	1.20

JBT Standard Transmission Capacity Table

Table 41 JBT shape standard transfer capacity per rib (Unit: W)

Small pulley	Small pulley pitch diameter (mm)							
(rpm)	20	25	30	40	50	80	100	150
200 300 400 500 600				44.1 51.5	51.5 58.8 58.8	18.8 80.9 95.6 117.7	58.8 80.9 103.0 125.0 154.5	80.9 125.0 154.5 181.2 220.7
700 800 900 950 1,000	14.7 14.7	22.1 29.4 29.4 29.4 29.4	29.4 29.4 36.8 36.8 36.8	58.8 58.8 66.2 66.2 66.2	73.5 80.9 88.3 88.3 88.3 88.3	132.4 147.1 154.5 169.2 170.5	169.2 191.2 213.3 220.9 235.4	257.4 294.2 316.3 330.3 360.4
1,100 1,150 1,200 1,300 1,400	14.7 14.7 14.7 14.7 14.7	29.4 29.4 36.8 36.8 36.8	44.1 44.1 44.1 51.5	73.6 80.9 80.9 88.3 95.6	110.3 110.3 117.7 125.0 132.4	191.2 198.6 205.9 220.7 242.7	257.4 264.8 279.5 286.8 308.9	382.5 397.2 411.9 441.3 470.7
1.425 1.500 1.600 1.700 1.750	14.7 14.7 14.7 14.7 14.7	36.8 36.8 44.1 44.1 44.1	51.5 51.5 58.8 58.8 58.8 58.8	95.6 103.0 103.0 110.3 110.3	132.4 139.7 139.7 154.5 154.5	242.7 257.4 272.1 279.5 286.8	316.3 331.0 353.0 367.8 382.5	478.1 500.1 529.6 551.6 566.3
1,800 1,900 2,000 2,200 2,400	14.7 14.7 14.7 14.7 14.7	44.1 44.1 51.5 51.5 51.5	58.8 66.2 66.2 73.6 73.6	117.7 125.0 125.0 139.7 139.7	161.8 169.2 176.5 191.2 205.9	294.2 308.9 323.6 353.0 375.1	389.8 404.5 426.6 463.4 500.1	581.0 610.5 632.5 684.0 720.8
2,600 2,800 2,850 3,000 3,200	22.1 22.1 22.1 22.1 22.1 22.1	58.8 58.8 58.8 66.2 66.2	80.9 80.9 88.3 88.3 95.6	154.5 161.8 161.8 176.5 183.9	220.7 228.0 235.4 242.7 257.4	397.2 426.6 433.9 456.0 478.1	522.2 559.0 566.3 588.4 595.8	772.3 809.1 823.8 853.2 890.0
3,400 3,450 3,600 3,800 4,000	22.1 22.1 22.1 22.1 22.1 22.1	66.2 66.2 66.2 66.2 66.2	95.6 95.6 103.0 103.0 110.3	191.2 198.6 198.6 213.3 220.7	272.1 279.5 286.8 323.6 316.3	500.0 500.0 522.2 544.3 566.3	647.2 654.6 676.7 706.1 728.1	919.4 926.7 948.8 978.2 992.9
5.000 6.000 7.000 8.000 9.000	14.7 14.7 14.7	80.9 88.3 95.6 95.6 103.0	117.7 139.7 154.5 161.8 176.5	257.4 294.2 323.6 353.0 382.5	367.8 419.2 470.7 500.1 536.9	662.0 735.5 794.3 831.1	831.1 904.7	
10,000		103.0	176.5	397.2	559.0			

• Bold numbers indicate a belt speed of 30 m/sec or greater, so only use if a special design is required.

Design Procedure

- Machine type
- **b** Transfer power
 - For transfer of power, use of the actual load that is applied to the belt is ideal, but generally, the rated load of the motor is used.
- Rotational speed of the small pulley
- Rotational speed ratio
 (Large pulley diameter)
 Small pulley diameter
- Tentative distance between shafts
- Operating environment (low temperature, oil, water, foreign material) Avoid use in high temperature, acidic, and basic environments.

Design Procedure

Determine design power.

• How to determine design power (Pd)

Pd=Pt∙Ko

However,

Pt: Transfer power (W) Ko: Load correction factor 🗢 Table 42

Table 42 Load correction factor (Ko)

Operating conditions	Ко
Normal use	1.2
Large load fluctuations	1.4

Design Procedure

Determine the large and small pulleys, standard belt, and distance between shafts.

- Determine the large and small pulleys.
- How to determine the outer diameter (Do, do) of the large and small pulleys

 $Do=do \frac{nd}{nD}$

However,

Nd: Small pulley rotational speed (rpm) nD: Large pulley rotational speed (rpm)

- Use a pulley equal to or larger than the minimum pulley diameter for the small pulley.
- Minimum pulley diameter 🌒 (Table 43)

Table 43 Minimum pulley diameter

Belt type	Single cog
Minimum pulley diameter (mm)	18

2 Determine the standard belt.

Using the tentative distance between shafts and large and small pulley outer diameters already determined, determine the outer circumference (Lo') of a suggested belt.

 How to determine the outer circumference (Lo') of a suggested belt

 $Lo'=2C'+1.57(Do+do)+\frac{(Do-do)^2}{4C'}$

However, C': Tentative distance between shafts (mm) Do: Large pulley outer diameter (mm) do: Small pulley outer diameter (mm) Select a standard belt with length closest to the outer circumference of this suggested belt. €)(Page 13, Table 17)

Determine the accurate distance between shafts.
 Using this standard belt outer circumference, determine the
 accurate distance between shafts (C) using the following equation.

How to determine distance between shafts (C)

 $b + \sqrt{b^2 - 8 (Do - do)^2}$

 $b=2Lo-\pi$ (Do+do)

However, Do: Large pulley outer diameter (mm) do: Small pulley outer diameter (mm) Lo: Standard belt outer circumference (mm)

Design Procedure

Determine the number of belts to use.

• How to determine the number of belts to use (nb)

Pd

nb= ·

However,

Pd: Design power (W) Ps: Standard transfer capacity (W) € (Page 31, Table 44) K∂: Contact angle correction factor € (Page 31, Table 45)

As a basic rule, use only one belt.

Table 44 Standard transmission capacity table (Unit: W)

Small pulley rotational	Small pulley outer diameter (mm)									
speed (rpm)	16	18	20	25	30					
1,000	6	8	10	15	20					
1,500	8	12	16	22	32					
2,000	10	16	20	30	42					
3,000	18	24	32	46	62					
4,000	22	32	42	62	84					
5,000	28	40	52	76	105					
6,000	34	46	62	92	126					

Table 45 Contact angle correction factor (K $\!\theta\!)$

Do-do C	$\begin{array}{c c} Do-do & Small pulley \\ \hline C & contact angle (\theta^{\circ}) \end{array}$					
0.00	180	1.00				
0.20	169	0.97				
0.40	157	0.94				
0.60	145	0.91				
0.80	133	0.87				
1.00	120	0.82				
1.20	106	0.77				
1.40	91	0.70				

Design Procedure

Determine the transfer power required for design.

Plain rope transfer capacity changes with belt tension. Select the belt shape and belt tension with the elongation ratio that will achieve the necessary transfer capacity.

Design Procedure

Determine the small pulley diameter.

For the small pulley diameter, use something equal to or larger than the minimum recommended pulley diameter.

	-	-									
Belt Profile Pulley diameter	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 12	No. 15
Minimum pitch diameter (mm)	15	20	30	40	50	60	70	85	95	120	150
Recommended minimum pitch diameter (mm)	20	30	40	55	70	85	100	120	135	140	180
piton diameter (mm)											

Table 47 Super Starrope minimum pulley diameter

Belt Profile Pulley diameter	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 12	No. 15
Minimum pitch diameter (mm)	20	30	40	50	60	70	80	90	100	120	150
Recommended minimum pitch diameter (mm)	30	40	55	70	85	100	115	130	140	150	180

Table 48 Prene V rope minimum pulley diameter

Pulley diameter Belt Profile	М	А	В
Minimum pitch diameter (mm)	40	85	100
Recommended minimum pitch diameter (mm)	60	120	130

Table 49 Prene hexagonal rope minimum pulley diameter

Pulley diameter Belt Profile	АА	BB
Minimum pitch diameter (mm)	100	130
Recommended minimum pitch diameter (mm)	135	150

Design Procedure

Determine effective tension.

1 Determine belt speed.

• How to determine belt speed (V)

However.

dp: Small pulley pitch diameter (mm) nd: Small pulley rotational speed (rpm)

2 Determine the contact angle correction factor.

• How to determine the contact angle correction factor (K θ)

Determine the small pulley contact angle (θ°) and then read the correction factor from Table 50.

$$\theta^{\circ} = 180^{\circ} - \frac{57.3 (Dp - dp)}{C}$$

However, Dp: Large pulley pitch diameter (mm)

dp: Small pulley pitch diameter (mm) C: Distance between shafts (mm)

③ Determine effective tension.

How to determine effective tension (Te)

$$\mathsf{Te} = \frac{1000\,\mathsf{Pt}}{\mathsf{V}\cdot\mathsf{K}\theta} \times \frac{1}{1000} \,(\mathsf{N})$$

However, Pt: Transfer power (W) V: Belt speed (m/sec) K∂: Contact angle correction factor € (Table 50)

Table 50 Contact angle correction factor (K θ)

Contact angle (°)	180°	175	170	165	160	150	140	130	120	110
Correction factor K θ	1.00	0.99	0.98	0.97	0.95	0.92	0.89	0.84	0.80	0.78

Select belt shape and elongation ratio.

Select a belt shape and elongation ratio from the allowable tension Ta table (Page 33, Tables 48 to 50) such that Ta > Te.

Table 51 Starrope allowable tension (Ta) (Unit: N)								Table 52 Super Starrope allowable tension (Ta)						(Unit: N)										
-	Belt shape Elongation ratio	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 12	No. 15	Belt shape	No. 2	No. 3	No. 4	No. 5	No. 6	No. 7	No. 8	No. 9	No. 10	No. 12	No. 15
	1%	0.39	0.88	1.57	0.25	3.63	4.90	6.37	8.14	9.81	14.4	22.6	1%	0.59	1.37	2.35	3.73	5.49	7.35	9.66	12.3	14.7	21.7	33.8
	2%	0.78	1.77	3.04	4.81	6.96	9.41	12.3	15.6	19.2	27.7	43.3	2%	1.18	2.64	4.66	7.26	10.5	14.1	18.4	23.4	28.8	41.5	65.0
	3%	1.18	2.55	4.51	7.16	10.2	13.9	18.2	23.0	28.4	41.8	64.1	3%	1.77	3.82	6.77	10.8	15.3	20.9	27.4	34.6	42.7	61.5	96.2
	4%	1.47	3.33	5.88	9.22	11.2	18.0	23.6	30.0	36.9	53.2	83.2	4%	2.26	5.08	8.83	13.8	16.8	27.1	35.5	45.0	55.3	79.7	125.0
	5%	1.86	4.12	7.35	12.5	16.6	22.6	29.4	37.5	46.2	66.5	104.0	5%	2.84	6.18	11.1	18.7	24.9	33.8	44.1	56.3	69.3	99.7	156.0

Table 53 Plain V rope allowable tension (Ta) (Unit)									
Elongation ratio Belt shape	М	А	В						
1%	5.59	10.5	17.5						
2%	10.8	20.3	33.6						
3%	15.9	30.0	49.7						
4%	20.7	38.9	64.4						
5%	25.9	48.7	80.6						

Note) 1. The values shown in the tables above are for use at room temperature.

2. The normal elongation ratio is 3 to 4%; please do not use at 5% or above.

3. When using the tables above, the shaft load is (2.5 x Ta) N.

4. Please set the belt speed to 10 m/sec or less.

5. Please do not store or use in high humidity areas

Table 54 Plain hexagonal rope allowable tension (Ta) (Unit: N)

Elongation ratio Belt shape	AA	BB
1%	13.5	23.4
2%	26.1	45.2
3%	38.6	67.5
4%	50.2	87.1
5%	62.8	109

Endless Operation Procedure

Prene rope has excellent melting characteristics when heated, so endless processing is simple. Use the Mitsuboshi Starrope Welding Machine "MS-3 Model" for the operations.

1 Prepare the rope

Cut the rope at the prescribed length such that the cross section is perpendicular to the longitudinal direction of the rope.

4 Perform the bonding

After the rope has melted, remove from the heated plate and bond on top of the stand such that both ends of the rope remain straight.

2 Prepare the welding machine

1. Connect the power cord to 100 V AC power. 2. When the warm-up lamp starts flashing, it is ready for use.

5 Cool using water After bonding, continue to press together and cool using water.

3 Perform the fusing

Lightly push both ends of the rope at right angles to the heated plate and wait for the cross section of the rope to melt.

6 Remove any protruding parts

Remove any protruding parts from the rope bond area using nippers, etc. Make sure the diameter is not smaller than the original rope diameter.

Mitsuboshi Starrope Welding Machine (MS-3) Specifications Heater capacity 100 V Heated plate set temperature 230 ± 10°C Time to reach set temperature: approximately six minutes

Precautions for use

The heated plate is hot (approximately 230°C) during use, so be careful not to burn yourself. If a substance that melts and decomposes gets on the heated plate, bond strength will be reduced, so remove the substance by lightly and carefully scraping the heated plate using a wire brush or knife. The heated plate temperature is set to $230 \pm 10^{\circ}$ C, \bigcirc but if the temperature is too high (if bubbles form at the rope bond part), turn the temperature adjustment screw to the left.
If the temperature is too low (rope does not melt within the standard melt time), turn the temperature adjustment screw to the right.

MITSUBOSHI BELTING LTD.

The information contained in this catalogue is for an informational purpose only. IN NO EVENT SHALL MITSUBOSHI BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL DAMAGES OR LOST PROFITS, ARISING OUT OF OR RELATED TO MITSUBOSHI PRODUCTS NOR FOR ANY DAMAGES ARISING DUE TO ANY USE OF MITSUBOSHI PRODUCTS NOT IN CONFORMANCE WITH THE INSTRUCTION PROVIDED BY MITSUBOSHI IN THIS CATALOGUE. MITSUBOSHI SPECIFICALLY DISCLAIMS ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR PARTICULAR PURPOSE.